Access to Excellent Research: Scopus Content in Serbia

Péter Porosz
Solution Manager CEE
October 4th, 2016
Agenda

• Supporting the complete research cycle

• Scopus content coverage and selection

• What content expansion programs are ongoing?

• The profile of Serbia and South-Eastern Europe in Scopus

• The importance of metrics

• Using Scopus
Supporting the complete research cycle
How Scopus and Scopus data support the researcher workflow

Find out what already exists in the global world of research output

Determine how to differentiate your research topic and find new ideas

Decide what, where and with whom to partner or collaborate with

Identify and analyze which journals to submit your article; get published

Track impact of your research; monitor global research trends

Manage your career through citation counts and h-index (and other metrics)
Scopus is the Gold standard: more than 150 leading research organizations rely on Scopus data
Scopus content coverage and selection
Today we will focus on Scopus but it is important to remember that Scopus underpins other solutions.
What content does Scopus include?

58.2M records from 22,245 serial titles and 98,060 books
21.6M pre 1996 records | 36.3M post 1995 records

- Content from > 5,000 publishers
- “Articles in Press” from > 3,750 titles
- Titles from 105 different countries in all geographical regions
- 40 “local” languages covered
- More than 4,240 Gold Open Access journals indexed

Scopus is ideal compared to other products because it has the broadest coverage of global, curated, relevant research, with smart, simple tools to help track, analyze and visualize research.
Scopus covers different source types for a reason

JOURNALS
- Timely
- Peer-reviewed (formal research)

All subject fields, but typical fields with high ratio of journal publication: chemical, biological, health sciences etc.

CONFERENCES
- Preliminary research (can be a bit less formal)
- Newer ideas

Mainly of importance in Computer Science and Engineering-related subject fields

BOOKS
- Thorough analysis of a specific topic

Mainly of importance in Social Sciences and the Arts & Humanities

Different source types are added to ensure that coverage, discoverability, profiles and impact measurement for research in all subject fields is accounted for in Scopus.
Different source types to ensure coverage in all subject fields

JOURNALS
- 21,362 peer-reviewed journals
- 362 trade journals
 - Full metadata, abstracts and cited references (ref’s post-1995 only)
 - Pre-1996 cited ref’s expansion 4M out of 12M
 - Going back to 1823
 - Funding data from acknowledgements

CONFERENCES
- 84K events
- 7.0M records (12%)
 - Conf. expansion (2005 – 2013)
 - 1,017 conferences
 - 6,022 conf. events
 - 410K conf. papers
 - 5M citations

Mainly Engineering and Physical Sciences

BOOKS
- 521 book series
 - 28K Volumes
 - 1.1M items
- 98,060 stand-alone books
 - 785K items

Books expansion:
- 120K books by 2015
- Focus on Social Sciences and A&H

Different source types are added to ensure that coverage, discoverability, profiles and impact measurement for research in all subject fields is accounted for in Scopus.

Source: Scopus title list (June 2015)
Scopus article growth over years

Source: Scopus data March 2015
Ratio of titles per Publisher in Scopus

10% ELSEVIER
8% Springer
5% WILEY-BLACKWELL
5% Taylor & Francis
2% SAGE
1% Wolters Kluwer Health
1% OXFORD UNIVERSITY PRESS
1% Emerald
1% InderScience Publishers
1% CAMBRIDGE UNIVERSITY PRESS
1% BENTHAM SCIENCE
1% IEEE

Other 60%

Source: Scopus title list (February 2015)
Comparison with nearest peer

Scopus
- ~22K titles
- >5,000 publishers
- Updated daily

WEB OF SCIENCE™
- ~12K titles (Core Collection)
- 3,300 publishers
- Updated weekly

<table>
<thead>
<tr>
<th>Area</th>
<th>Scopus</th>
<th>Web of Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Sciences</td>
<td>7,443 (+73%)</td>
<td>4,291</td>
</tr>
<tr>
<td>Health Sciences</td>
<td>6,795 (+96%)</td>
<td>3,472</td>
</tr>
<tr>
<td>Life Sciences</td>
<td>4,492 (+50%)</td>
<td>3,002</td>
</tr>
<tr>
<td>Social Sciences</td>
<td>8,086 (+99%)</td>
<td>4,060</td>
</tr>
</tbody>
</table>

Source: Web of Science Real Facts, Web of Science title list and Scopus’ own data (April 2015)
Broad coverage does not mean poor standards

- Titles are selected by the independent Content Selection & Advisory Board (CSAB)
- The CSAB is chosen for their expertise in specific subject areas; many have (journal) Editor experience

Focus on quality through content selection by the independent CSAB, because:

- Provide accurate and relevant search results for users
- No dilution of search results by irrelevant or low quality content
- Support that Scopus is recognized as authoritative
- Support confidence that Scopus “reflects the truth”
Transparent Scopus selection criteria for serial content

All titles should meet all minimum criteria in order to be considered for Scopus review:

- **Peer-review**
- **English abstracts**
- **Regular publication**
- **Roman script references**
- **Pub. ethics statement**

Eligible titles are reviewed by the Content Selection & Advisory Board according to a combination of 14 quantitative and qualitative selection criteria:

<table>
<thead>
<tr>
<th>Journal Policy</th>
<th>Quality of Content</th>
<th>Journal Standing</th>
<th>Regularity</th>
<th>Online Availability</th>
</tr>
</thead>
</table>
| • Convincing editorial concept/policy
• Type of peer-review
• Diversity geographic distribution of editors
• Diversity geographic distribution of authors | • Academic contribution to the field
• Clarity of abstracts
• Quality and conformity with stated aims & scope
• Readability of articles | • Citedness of journal articles in Scopus
• Editor standing | • No delay in publication schedule | • Content available online
• English-language journal home page
• Quality of home page |

Continuous review process using an online Scopus Title Evaluation Platform (STEP)

Info: http://www.elsevier.com/online-tools/scopus/content-overview

Questions: titlesuggestion@scopus.com
Importance of English language information in Scopus

On some properties of ring varieties, where isomorphic zero-divisor graphs of finite rings give isomorphic rings

Author keywords:
Finite ring, Variety of associative rings, Zero-divisor graph

Abstract:
Denote by $\Gamma(R)$ the zero-divisor graph of an associative ring R. In this paper, we study varieties of associative rings, where an isomorphism of $\Gamma(R)$ and $\Gamma(S)$ implies an isomorphism of the rings R and S for any finite rings R, S.

Cited by 3 documents since 1996

1. Describing ring varieties in which all finite rings have Hamiltonian zero-divisor graphs
 Maltsev, Y.N., Kuzmina, A.S.
 (2013) Algebra and Logic

2. The description of varieties of rings whose finite rings are uniquely determined by their zero-divisor graphs
 Zhuravlev, E.V., Kuzmina, A.S., Maltsev, Yu.N.
 (2013) Russian Mathematics

3. On varieties of rings whose finite rings are determined by their zero-divisor graphs
 Kuzmina, A.S., Maltsev, Y.N.

References (7)

1. Akbar, S., Mohammadian, A.
 On the zero-divisor graph of a commutative ring
 doi: 10.1016/S0021-8693(03)00435-6

2. Akbari, S., Mohammadian, A.
 On zero divisor graphs of finite rings
 doi: 10.1016/j.jalgebra.2007.02.051

3. Anderson, D.F., Livingston, P.S.
 The zero-divisor graph of a commutative ring
 View at Publisher

4. Beck, I.
 Coloring of commutative rings
 View at Publisher

5. Redmond, S.P.
 The zero-divisor graph of a noncommutative ring

6. Rowen, L.H.
 Academic Press

7. Tarski, A.
 Equationally complete rings and relation algebras
Capture English language information from the source
How to keep track of your suggested title?

As a primary publisher and information aggregator, Elsevier understands the unique needs of Authors, Editors and Publishers and provides resources to support the research community:

- **Advice from CSAB** and FAQs available on Scopus info site
- **Publication ethics** resources via Publishing Ethics Resource Kit (PERK) and Committee on Publication Ethics (COPE)
- Translation, editing and publishing services
- Elsevier.com Editors section (for ELS editors but applicable to all)
- Freely available journal metrics to compare & assess journal performance
- Trends in research via Research Trends newsletter
Scopus title review results and resources

In total 4,593 titles reviewed (2011 –2014) of which 2,080 (31%) accepted for Scopus

Collaborations for local content selection & advisory boards:

Thailand:

Korea: NRF National Research Foundation of Korea

New local boards in 2015:

Russia: MINISTRY OF EDUCATION AND SCIENCE OF THE RUSSIAN FEDERATION

China: istic

Local pro-active content suggestion initiatives:

FECYT

UNAM

ERA (Australia)

Accepted

Rejected
Curation matters: re-evaluation

Our customers demand it. Our business depends on it

- **Annual rolling initiative**:
 - Identify and notify **underperforming journals**
 - One year to improve quality based on **metrics** & set **benchmarks** (output, usage, citations, self-citations)
 - If red flag remains, the journal will be reviewed by the CSAB with the possible consequence of **discontinuation** in Scopus
 - **Incentive** for continuous journal performance
 - Launch Q1 2015, re-evaluation to start Q1 2016

The re-evaluation process is essentially a rigorous housekeeping exercise designed to ensure that the journal content in Scopus meets the high standards we and our customers now demand.
Re-evaluation: metrics and benchmark

<table>
<thead>
<tr>
<th>Metric</th>
<th>Benchmark</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-citations</td>
<td>200%</td>
<td>The journal has a self-citation rate two times higher, or more, when compared to peer journals in its subject field.</td>
</tr>
<tr>
<td>Citations</td>
<td>50%</td>
<td>The journal received half the number of citations, when compared to peer journals in its subject field.</td>
</tr>
<tr>
<td>Impact Per Publication</td>
<td>50%</td>
<td>The journal has an IPP score half or less than the average IPP score, when compared to peer journals in its subject field.</td>
</tr>
<tr>
<td>Article Output</td>
<td>50%</td>
<td>The journal produced half, or less, the number of articles, when compared to peer journals in its subject field.</td>
</tr>
<tr>
<td>Abstract Usage</td>
<td>50%</td>
<td>The journal’s abstract are used half as much, or less, when compared to peer journals in its subject field.</td>
</tr>
<tr>
<td>Full Text Links</td>
<td>50%</td>
<td>The journal’s full text are used half as much, or less, when compared to peer journals in its subject field.</td>
</tr>
</tbody>
</table>

Important: Journals are only up for Re-evaluation if the journal underperforms in all 6 metrics. If 1 improves, journal will be taken off the Re-evaluation list.
What content expansion projects are ongoing?
Pre-1996 cited reference expansion

Coverage years
- Pre-1996, going back to 1970

Number of articles
- Around 8M+ articles will be reprocessed to include cited references. In addition around 4M pre-1996 articles will be backfilled

Scope
- Archives from major publishers with available digital archives

Already 4M pre-1996 documents loaded in Scopus leading to additional 84.8M cited references:

2015 processing planning:
- Tier 1
- Tier 2
- Tier 3
- Tier 4

Source: Scopus (August 2015)
Books expansion program

Coverage years
- Back to 2005 (2003 for A&H)

Number of books
- 120,000 by the end of 2015; at least 20,000 each year thereafter

Book types
- Monographs, edited volumes, major reference works, graduate level text books

Books target in Scopus

Actual books in Scopus

<table>
<thead>
<tr>
<th>Document Type</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Book Chapter</td>
<td>637,282</td>
</tr>
<tr>
<td>Book</td>
<td>98,060</td>
</tr>
</tbody>
</table>

(plus ± 26K book Volumes from series)

All major publishing houses are part of the Books expansion program, adding up to a total of ±40 publishers who are contributing.
The profile of Serbia and South-Eastern Europe in Scopus
Breadth of coverage Serbia (journals)

Journals from Serbia*:

- **52 Active journals** from Serbia in Scopus of which 30 are Scopus-unique

*Journals published by publishers located in Serbia

Source: Scopus and WoS title list June 2016.
Scholarly output: publications in Scopus from South-Eastern Europe
Output in top 10 pct. most cited: publications in Scopus from South-Eastern Europe

Chart Legend
International collaboration ratio publications in Scopus from South-Eastern Europe
The importance of metrics
Typical metrics for journals

About IPP
The Impact per Publication measures the ratio of citations per article published in the journal.

Learn more

About SNIP
Source Normalized Impact per Paper measures contextual citation impact by weighting citations based on the total number of citations in a subject field.

Learn more

About SJR
SCImago Journal Rank is a prestige metric based on the idea that not all citations are the same.

Learn more

Journal Metrics
www.journalmetrics.com/
SNIP: Source-normalized impact per paper

All >20K journals have a **Source-normalized impact per paper** (SNIP) measuring contextual citation impact by weighting citations per subject field

- Peer-reviewed papers only
- Three year citation window
- Field’s frequency and immediacy of citation
- Database coverage
- Journal’s scope and focus
- Measured relative to database median

<table>
<thead>
<tr>
<th>Journal</th>
<th>IIP</th>
<th>Citation Potential</th>
<th>SNIP (IIP/Citation Potential)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inventiones Mathematicae</td>
<td>1.5</td>
<td>0.4</td>
<td>3.8</td>
</tr>
<tr>
<td>Molecular Cell</td>
<td>13.0</td>
<td>3.2</td>
<td>4.0</td>
</tr>
</tbody>
</table>
SCImago Journal Rank (SJR) – overview

• Developed by Professors Félix de Moya and Vicente Guerrero Bote. SCImago Journal Rank (SJR) is a *prestige metric* based on the idea that 'all citations are not created equal'.

• The subject field, quality and reputation of the journal have a direct effect on the value of a citation.

• SCImago is a research group from the Consejo Superior de Investigaciones Científicas (CSIC), University of Granada, Extremadura, Carlos III (Madrid) and Alcalá de Henares.

• the SCImago Journal Rank (SJR) indicator, developed by SCImago from the widely known algorithm *Google PageRank™*. This indicator shows the visibility of the journals contained in the *Scopus®* database.

Extracted from Wikipedia, 3rd May 2016
Scimago Journal Rank – professional interpretation

All 20K journals have a ScImago Journal Rank (SJR)

Prestige transferred when a journal cites
• Citations are weighted depending on where they come from
• A journal’s prestige is shared equally between its citations

Life Sciences journal
High impact, lots of citations
One citation = low value

Arts & Humanities journal
Low impact, few citations
One citation = high value

SJR normalizes for differences in citation behaviour between subject fields
Google PageRank

Extracted from Wikipedia, 3rd May 2016
The PageRank algorithm outputs a probability distribution used to represent the likelihood that a person randomly clicking on links will arrive at any particular page.

It is assumed in several research papers that the distribution is evenly divided among all documents in the collection at the beginning of the computational process.

The PageRank computations require several passes, called "iterations", through the collection to adjust approximate PageRank values to more closely reflect the theoretical true value.

The PageRank value for a page \(u \) is dependent on the PageRank values for each page \(v \) contained in the set \(B_u \) (the set containing all pages linking to page \(u \)), divided by the number \(L(v) \) of links from page \(v \).

\[
PR(u) = \sum_{v \in B_u} \frac{PR(v)}{L(v)}
\]

Extracted from Wikipedia, 3rd May 2016
Google PageRank calculation

Iterative

- An *imaginary surfer* who is randomly clicking on links will eventually stop clicking.
- The probability, at any step, that the person will continue is a damping factor d.
- It is generally assumed that the damping factor will be set around 0.85.

- At $t=0$, an initial probability distribution is assumed, usually

$$PR(p_i; 0) = \frac{1}{N}$$

- At each time step, the computation, as detailed above, yields

$$PR(p_i; t + 1) = \frac{1 - d}{N} + d \sum_{p_j \in M(p_i)} \frac{PR(p_j; t)}{L(p_j)}$$

where P_1, \ldots, P_N are the pages under consideration, $M(P_i)$ is the set of pages that link to P_i, $L(P_j)$ is the number of outbound links on page P_i, and N is the total number of pages.

Extracted from Wikipedia, 3rd May 2016
How does SJR differ from Google PageRank?

• In Google PageRank, value (prestige) is derived from the number of incoming hyperlinks. For SJR it is the number of incoming citations.
• Google PageRank rounds everything to an integer between 1 and 10; SJR uses a continuous scale.
• Google PageRank is open to manipulation because hyperlinks are counted as citations but unlike citations, hyperlinks are not vetted or controlled by a peer-review process.
• SJR can distinguish between citations based on the document type that they come from, making it highly resistant to manipulation.
• Google PageRank does not apply a 'hyperlink window' – it counts total incoming hyperlinks on the day it is calculated. SJR applies a three-year citation window
• SJR is calculated yearly.
The Shape of Science is a new graphical interface designed to access the bibliometric indicators database of the SCImago Journal & Country Rank portal (based on 2012 data).

The SCImago Journal & Country Rank is a portal that includes the journals and country scientific indicators developed from the information contained in the Scopus® database (Elsevier B.V.). These indicators can be used to assess and analyze scientific domains.

This platform takes its name from the SCImago Journal Rank (SJR) indicator, developed by SCImago from the widely known algorithm Google PageRank™. This indicator shows the visibility of the journals...
Welcome to Journal Metrics from Elsevier

The academic community has long been demanding more transparency, choice and accuracy in journal assessment. Elsevier now provides three alternative, transparent and accurate views of the true citation impact a journal makes:

- Source Normalized Impact per Paper (SNIP)
- The Impact per Publication (IPP)
- SCImago Journal Rank (SJR)

The three different impact metrics are all based on methodologies developed by external bibliometricians and use Scopus as the data source. Scopus is the largest citation database of peer-reviewed literature and features tools to track, analyze and visualize research output. Via this website, the three journal metrics are provided free of charge.
What data do we use in Research Performance Management?

• Non-bibliometric data
 - Peer review qualification
 - Objects or facts such as grant financing data
 - Description of economic and social impact

• Bibliometric data
 - Journal metrics (incl. SJR)
 - Publication metrics
 - Alternative metrics
 - ‘Garage metrics’
Metrics at disposal in SciVal

<table>
<thead>
<tr>
<th>Productivity</th>
<th>Citation Impact</th>
<th>Collaboration</th>
<th>Disciplinarity</th>
<th>Snowball Metric</th>
<th>“Power metric”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scholarly Output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Journal Count</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Journal Category Count</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Citation Count</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cited Publications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Citations per Publication</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Citing Countries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field-Weighted Citation Impact</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collaboration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collaboration Impact</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Academic-Corporate Collaboration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Academic-Corporate Collaboration Impact</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outputs in Top Percentiles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Publications in Top Journal Percentiles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h-indices</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A broad range of metrics is essential to find answers to a broad range of questions. We always need to adhere to the main rule…
Examples drawn from Scopus

Citations
36 Cited by documents

Citation Count
36
Cited by in Scopus

Field-Weighted Citation Impact
0.65

Citation Benchmarking
74th percentile
Compared to Multidisciplinary articles of the same age

Cited by

36 Citations
Date range: 2011 to 2015

Benchmarking
Measures of activity relative to specific research domains, based on cited by in Scopus
Compared to Multidisciplinary articles of same age
<table>
<thead>
<tr>
<th>Overview</th>
<th>Citations</th>
<th>Scholarly Activity</th>
<th>Scholarly Commentary</th>
<th>Mass Media</th>
<th>Social Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Citation Count</td>
<td>Field-Weighted Citation Impact</td>
<td>Citation Benchmarking</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>0.65</td>
<td>74th percentile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cited by in Scopus</td>
<td>Compared to Multidisciplinary articles of the same age</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mendeley</td>
<td>Mass Media</td>
<td>Blogs</td>
</tr>
<tr>
<td>Readers</td>
<td>Items</td>
<td>Posts</td>
</tr>
<tr>
<td>136</td>
<td>11</td>
<td>8</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Twitter</td>
<td>Q&A sites</td>
<td>4 Other sources</td>
</tr>
<tr>
<td></td>
<td>Post to Q&A site</td>
<td>Mentions</td>
</tr>
<tr>
<td>1630</td>
<td>1</td>
<td>83</td>
</tr>
</tbody>
</table>

Engagement highlights

Scholarly Activity - 140 readers from 2 sources
Downloads and posts in common research tools
- Mendeley: 136 Readers
- Top Discipline: Physics
- Top Demographic: PhD Student
- Save to Mendeley

Social Activity - 1713 mentions from 5 sources
Mentions characterized by rapid, brief engagement on platforms used by the general population, such as Twitter, Facebook, and Google+.
- 1630 tweets from 1567 accounts
- 8 Reddit posts from 8 accounts
- 41 Facebook posts from 40 accounts
- 1 pin from 1 account
- 35 Google+ posts from 34 accounts

Benchmark highlights
Based on 140 readers from 2 sources
Compared to Multidisciplinary articles of the same age
All Social Activity - 1713 84th percentile
View all Social Activity
What data do we use in Research Performance Management?

• Non-bibliometric data
 - Peer review qualification
 - Objects or facts such as grant financing data
 - Description of economic and social impact

• Bibliometric data
 - Journal metrics (incl. SJR)
 - Publication metrics
 - Alternative metrics
 - ‘Garage metrics’
What data do we use in Research Performance Management?

• Non-bibliometric data
 - Peer review qualification
 - Objects or facts such as grant financing data
 - Description of economic and social impact

• Bibliometric data
 - Journal metrics (incl. SJR)
 - Publication metrics
 o Publication → Publication Set
 - Alternative metrics
 - ‘Garage metrics’
What data do we use in Research Performance Management?

• Non-bibliometric data
 - Peer review qualification
 - Objects or facts such as grant financing data
 - Description of economic and social impact

• Bibliometric data
 - Journal metrics (incl. SJR)
 - Publication metrics
 - Publication → Publication Set
 - Research Area
 - Individual Researcher
 - Research Group
 - Research Institute
 - University
 - Country
 - Alternative metrics
 - ‘Garage metrics’
Using Scopus Editor Use Cases
Quick, easy access to an objective and transparent overview of the performance of your own and your competitors’ journals over time
- Compare up to 10 sources on a variety of parameters (SNIP, SJR, Citations, Documents, Percentage Not-Cited, Percentage Review)
- Provide access to a transparent and objective overview of the journal landscape going back to 1996
Journal Analyzer

16 sources found About Compare journals calculations

<table>
<thead>
<tr>
<th>Journal</th>
<th>SJR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addiction</td>
<td>2.172</td>
</tr>
<tr>
<td>Addiction Biology</td>
<td>2.649</td>
</tr>
<tr>
<td>Addiction Research and Therapy</td>
<td>0.603</td>
</tr>
<tr>
<td>Addiction science & clinical</td>
<td>0.632</td>
</tr>
<tr>
<td>American Journal on Addictions</td>
<td>0.897</td>
</tr>
<tr>
<td>CJAM Canadian Journal of Addiction</td>
<td>0.108</td>
</tr>
<tr>
<td>European Addiction Research</td>
<td>1.087</td>
</tr>
<tr>
<td>Heroin Addiction and Related Disorders</td>
<td>0.216</td>
</tr>
<tr>
<td>International Journal of Addiction</td>
<td>0.520</td>
</tr>
<tr>
<td>Journal of Addiction Medicine</td>
<td>0.792</td>
</tr>
<tr>
<td>Journal of Addictions and Related Disorders</td>
<td>0.393</td>
</tr>
<tr>
<td>Journal of Addictions Nursing</td>
<td>0.178</td>
</tr>
<tr>
<td>Journal of Addictive Disorders</td>
<td>0.974</td>
</tr>
<tr>
<td>Journal of Groups in Addictions</td>
<td>0.444</td>
</tr>
<tr>
<td>Journal of Social Work Practice</td>
<td>0.201</td>
</tr>
<tr>
<td>Sexual Addiction and Co...</td>
<td>0.439</td>
</tr>
</tbody>
</table>

Calculations last updated: 13 Jun 2014

Key take-away: Use the analyser to Benchmark and compare
Analyze results

• A tool launched in 2012, providing helpful graphics and table displays to gain more insight into search results
• Measures quantity: # documents on 7 parameters

Key take-away: Use Scopus to identify new and interesting areas of research
Analyze results

7 parameters to choose from: Year, Source title, Author name, Affiliation name, Country, Document type and Subject area

Key take-away: Analyse search results to provide high level detail
Key take-away: Use author searches to find reviewers and authors
Author Evaluator - Author/Review deep dive

Publication source → H-Index graphed by publication and citation frequency → Citation frequency over time → Co-author analysis and mapping

Key take-away: Use the Author Evaluator to gain the best insight into a potential reviewer or author
Citation Overview – Authors

Larsen, Trond H.
Science and Knowledge Division, Arlington, United States
Author ID: 8589341000

Documents: 20
Citations: 765 total citations by 530 documents
h Index: 10 (The h index considers Scopus articles published after 1996)
Co-authors: 58
Subject areas: Environmental Science, Agricultural and Biological Sciences

Key take-away: Use the Citation Overview to track author output and output impacts over time.
Summary

Scopus has **broad coverage** providing the most accurate view of the global research landscape.

Scopus has a **transparent content selection** process executed by the independent Content Selection & Advisory Board.

Scopus is working on **content expansion programs** to ensure that coverage, discoverability, profiles and impact measurement for research in all subject fields is accounted for in Scopus.

Journal and article level metrics are available in Scopus and help researchers and research organizations to evaluate research and researchers.

Scopus and Scopus data is being used by researchers, **publishers and leading institutions** to inform decisions about research output and research assessment.
Thank you!
Questions and answers

Look out for more developments from Scopus @

Scopus blog http://blog.scopus.com/

http://twitter.com/Scopus

www.elsevier.com/scopus