wouldn't you?
Scopus Development Focus

Superior support of the scientific literature research process - on finding relevant articles quickly and investigating current research relationships through citation information
Find (new) articles in familiar subject field

- “Start broad, then refine”
- “I want to skip articles, not miss them”
- One to three terms (average 2.3)
Your query: TITLE-ABS-KEY(subsurface drainage) AND PUBYEAR AFT 1995

1. 2005 Temperature and oxygen control on pyrite oxidation in frozen mine tailings [Abstract + Refs] View at Publisher Full Text Elberling, E. Cold Regions Science and Technology 41 (2), 121-133

Adaptation of the STICS model to subsurface drained soils

Julien Tournebizea, Cyril Kaoa, Nenad Nikolica and Daniel Zimmerb

a Cemagref, Drainage and Barrier Engineering Research Unit, Parc de Tourvoie, BP 44, 92163 Antony Cedex, France
b World Water Council, Les Docks de la Joliette, Atrium 10.3, 10 place de la Joliette, 13002 Marseille, France

(Received 16 July 2003; accepted 17 November 2003)

Abstract - The generic crop model STICS was modified to take into account shallow water-table fluctuations and subsurface drainage in the context of French waterlogged soils. This was accomplished by incorporating a subsurface drainage component into STICS code. The SIDRA (Simulation du Drainage) model was adapted to a daily time-step. For the dimensional aspect, the passage from two-dimensional drainage functioning to STICS one-dimensional conceptualization is done by taking an average water elevation between drain and mid-drain spacing. Simulation performances of the new STICS were evaluated by comparing its predictions with six years (1979-1983 and 1985-1986) of measured data from the field experiment of Arrou, located in northern France. Comparisons of STICS predictions with the measurements of drain-flow rates, total drained volumes and mass balances of the drainage water all indicate a good agreement, thus validating the assumption of a constant contribution of the water table to the drainage source.
Reduced Himalayan sediment production 8 Myr ago despite an intensified monsoon

Appel, E., Rössler, W., Corvinus, G.
Magnetic stratigraphy of the Miocene-Pliocene Surai Khola Siwaliks in West Nepal

Opydyes, N.D., Lindsay, E., Johnson, N., TahirKheli, P.A.K., Mirza, M.A.
Magnetic polarity stratigraphy and vertebrate paleontology of the upper Siwaliksub-group of northern Pakistan
(1979) Palaeogeogr. Palaeoclimatol. Palaeoecol. 27 pp. 1-34 [Cited 35 times]

Durani, K.H., Chen, Y., Courme, M.-D., Kassi, A.
Etude magnétostratigraphique préliminaire sur l'âge du bassin de Rudagi-Sibi (Nord-Est du Balouchistan, Pakistan) et ses implications tectoniques

Parès, J.M., Van der Voo, P., Downs, W.P., Yan, M., Fang, X.
Northeastward growth of the Tibetan Plateau: Magnetostratigraphic insights from the Guge basin

Decelles, P.G., Gehrels, G.E., Quade, J., Ogha, P.
Eocene-early Miocene foreland basin development and the history of Himalayan thrusting, western and central Nepal

Decelles, P.G., Giles, K.A.
Foreland basin systems
(1996) Basin Res. 8 pp. 105-123 [Cited 138 times]

Zijderveld, J.D.A.
A.C. demagnetization of rocks: Analysis of results
D.W. Collinson K.M. Creer S.K. (Eds.)

Charreau, J.; Inst. des Sci. de la Terre d'Orleans, rue de Saint Amand, 45067 Orleans Cedex 2, France; email: julien.charreau@univ-orleans.fr

Earth and Planetary Science Letters
Volume 230, Issue 1-2, 30 January 2005, Pages 177-192
138 Documents that cite:

DeCelles P.G., Giles K.A.
Foreland basin systems
1996, Basin Research, (2) 105-123

Author Name
- Catuneanu, O. (7)
- DeCelles, P.G. (7)
- Allen, F.A. (5)

Year
- 2005 (1)
- 2004 (21)
- 2003 (28)

Document Type
- Article (136)
- Review (2)

Subject Area
- Earth and Environmental Sciences (129)
- Engineering (56)
- Agricultural and Biological Sciences (2)

Results: 138

1. 2005
 - Magnetostratigraphy and rock magnetism of the Neogene Kuitun He section (northwest China): Implications for Late Cenozoic uplift of the Tianshan mountains
 - Charreau, J., Chen, Y., Gilder, S., Dominguez, S., Avouac, L.-P., Sen, S., Sun, D., (...), Wang, W.-M.

2. 2004
 - Time lag of syntectonic sedimentation across an alluvial basin: Theory and example from the Ebro Basin, Spain
 - Jones, M.A., Heller, P.L., Reccia, E., Garcés, M., Cabrera, L.
 - Basin Research, 16 (4), 467-488

3. 2004
 - Detrital geochronology and geochemistry of Cretaceous-Early Miocene strata of Nepal: Implications for timing and diachrony of initial Himalayan orogenesis
<table>
<thead>
<tr>
<th>#</th>
<th>Date</th>
<th>Document (Sort by relevance)</th>
<th>Author(s)</th>
<th>Source Title</th>
<th>Cited By</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2005</td>
<td>Temperature and oxygen control on pyrite oxidation in frozen mine tailings</td>
<td>Elberling, E.</td>
<td>Cold Regions Science and Technology 41 (2), 121-133</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>2005</td>
<td>Nutrient removal by a constructed wetland treating subsurface drainage from grazed dairy pasture</td>
<td>Tanner, C.C., Nguyen, M.L., Sukias, J.P.S.</td>
<td>Agriculture, Ecosystems and Environment 105 (1-2), 145-162</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>2005</td>
<td>Impact of unsaturated flow on pavement edgedrain performance</td>
<td>Stormont, J.C., Zhou, S.</td>
<td>Journal of Transportation</td>
<td>0</td>
</tr>
<tr>
<td>#</td>
<td>Year</td>
<td>Title</td>
<td>Author(s)</td>
<td>Source Title</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>--</td>
<td>------------------------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2005</td>
<td>Nutrient removal by a constructed wetland treating subsurface drainage from grazed dairy pasture</td>
<td>Tanner, C.C., Nguyen, M.L., Sukias, J.P.S.</td>
<td>Agriculture, Ecosystems and Environment 105 (1-2), 145-162</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2004</td>
<td>Adaptation of the STICS model to subsurface drained soils</td>
<td>Tchurneiv, J., Kao, C., Nikolic, N., Zimmer, D.</td>
<td>Agronomie 24 (6-7), 305-313</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2004</td>
<td>Movement of suspended matter and a bromide tracer to field drains in tilled and untilled soil</td>
<td>Petersen, C.T., Hansen, S., Jensen, H.E., Holm, J., Koch, C.B.</td>
<td>Soil Use and Management 20 (3) , 271-280</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2004</td>
<td>Wisconsin Glacial Lake sediments in the subsurface of Cape Cod, Massachusetts</td>
<td>Mulligan, A.E., Uchupi, E.</td>
<td>Northeastern Geology and Environmental Geology</td>
<td></td>
</tr>
</tbody>
</table>
Documents that cite:

DeCelles P.G., Giles K.A.

Foreland basin systems

1996, *Basin Research*, (2) 105-123

<table>
<thead>
<tr>
<th>Source Title</th>
<th>Author Name</th>
<th>Year</th>
<th>Document Type</th>
<th>Subject Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>More…</td>
<td>Catuneanu, O. (7)</td>
<td>2005 (1)</td>
<td>Article (136)</td>
<td>Earth and Environmental Sciences (129)</td>
</tr>
<tr>
<td>More…</td>
<td>DeCelles, P.G. (7)</td>
<td>2004 (21)</td>
<td>Review (2)</td>
<td>Engineering (56)</td>
</tr>
<tr>
<td>More…</td>
<td>Allen, F.A. (5)</td>
<td>2003 (28)</td>
<td>More…</td>
<td>Agricultural and Biological Sciences (2)</td>
</tr>
</tbody>
</table>

Results: 138

<table>
<thead>
<tr>
<th>Document (Sort by relevance)</th>
<th>Author(s)</th>
<th>Source Title</th>
<th>Cited By</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rank</td>
<td>Year</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>1</td>
<td>2003</td>
<td>Analytical approximation of subsurface total drainage quantity in non-steady state drainage flow, and its verification in heavy soils</td>
<td>Stibinger J.</td>
</tr>
<tr>
<td>2</td>
<td>2001</td>
<td>Modified SGS curve number method for predicting subsurface drainage flow</td>
<td>Yuan Y., Mitchell J.K., Hirschi M.C., Cooke R.A.C.</td>
</tr>
<tr>
<td>3</td>
<td>2004</td>
<td>Planning an Agricultural Subsurface Drainage System (Publication Series)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2004</td>
<td>Impact of subsurface drainage on improvement of crop production and farm income in north-west India</td>
<td>Datta K.K., Tewari L., Joshi P.K.</td>
</tr>
</tbody>
</table>
Scopus today

- Facilitates major tasks researchers have:
 - Find (new) articles in a familiar subject field
 - Find author-related information
 - articles by a specific author
 - information that would help in evaluating a specific author
 - Staying up-to-date
 - Getting an overview or understanding of a new subject field
What is Scopus?

Intuitive search and browse functionality

World's Largest Abstracts Database

- 14,000 titles
- STM & Social sciences
- 4,000 publishers

Focused web information

Academic library sources
What is Scopus?

- Search and navigation tool across scientific literature
- The world’s largest abstract & citation database
- Covering 14,000 titles, from 4000 publishers
- Simultaneous web search of 180 Million scientific web pages (including patent information)
- Entitled full-text in one click
- Advanced library integration and personalization features
Scopus covers 14,000 titles

- 12,650 academic journals
 - 1,100 Medline journals (100% coverage)
 - 465 Open Access journals
- 750 conference proceedings
- 600 trade publications
- 27 million abstracts from the last 40 years
- 230 Million references added to all abstracts from 1996 onwards
- 180 million scientific web pages via Scirus

Content is updated daily
Scopus subject coverage

- 4,500 Chemistry, Physics, Mathematics & Engineering
- 5,900 Life and Health Sciences (100% Medline coverage)
- 2,700 Social Sciences, Psychology and Economics
- 2,500 Biological, Agricultural and Environmental Sciences
Content Policy

- Scopus aims to be the most comprehensive single point of access for scientific, medical, technical and social science literature

- Additions to content are defined by user demand and prioritized by **Content Selection Committee** of Scientists and subject librarians

- We welcome electronic-only sources including Open Access journals

- Scopus covers journals from all geographical regions including non-English titles (with English abstracts)
Library integration

One-click full-text links from:
- Results list
- Full record
- Author references

The Library controls the links set-up:
- Pre-resolved links to publisher sites (CrossRef titles plus other publishers)
- Links resolver integration with Scopus

Innovative technology:
- Image-based linking Links in combination with LinkFinderPlus from Endeavor
Customer-defined links

- To link with one click to additional resources, for example
 - OPACs or collective library catalogues (such as SUDOC)
 - Free resources (such as Scirus)
 - Subscription-based databases (such as Ulrich’s)
How did we develop Scopus
Why Develop Scopus?

- Navigation is the Next Big Thing:
 - There is simply too much information available
 - And too little time to search it all
 - On the web, in databases, in libraries

- Users and librarians told us they want
 - A simple, single entry-point to the world’s scientific information
 - Easy to use
 - Combining official publications and everything on the web
 - Integrated with other library resources
 - And with the full text only one click away

- Elsevier wants to supply scientists with workflow tools that increase their productivity
Why Develop Scopus?

“Will Google find all the scholarly literature I need?”

“How do I know what is relevant to my work?”

“I want to skip, not miss articles”

“I want to help my users do their research more effectively, but they don’t come to the library anymore”

“There’s always more information”
Starting from the users’ needs

- If we understand the researcher workflow we can design better products
- So we significantly invest in user-based design
The scientist

- Over last 2 years, Elsevier conducted focus groups and onsite observation with scientists

- To document the way in which scientists:
 - Search for
 - Find and
 - Evaluate scientific literature and information
How we conduct usability testing

- Sit together at user’s site
- Use combination of functional prototype and static pages
- One hour structured interview
 - Discuss professional background, current research, level of computer expertise, information sources they use
- Let user explore the prototype, doing searches, minimal prompting
- Go through specific parts of the product and let user do specific tasks, stimulate ‘thinking aloud’
- User carries out work and explains
Learned to facilitate the major tasks

- Finding new articles in a familiar subject field
- Finding author-related information
 - articles by a specific author
 - information that would help in evaluating a specific author
- Staying up-to-date
- Getting an overview or understanding of a new subject field
Scopus for Scientists

- Designed and developed with users to meet their needs:
 - better navigation through the research literature
 - easy evaluation of scientific information
- Scientists want to find the information they need not become expert searchers
- They want a tool that’s as easy to use as web search but delivers precise results
- That takes them to the full-text article they’re subscribed to in just one click
Frequent User comments

“I found articles I couldn’t find in other databases”

“You always get useful results, always relevant”

“This is searching for dummies…”

“I did my grant application in half the time”

“I can follow a path and never hit a dead end”
Remember just 4 things:

1. Users who’ve tested it say they find more, faster - and Librarians like you helped develop it

2. Scopus increases the visibility and usage of your full text investments

3. It’s the biggest but it doesn’t feel like it – quality content plus smooth navigation

4. Scopus is easy to implement and comes as a complete service package
Wouldn't you?